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Lecture 11 Summary 

Phys 404 

 

 We consider the energy stored in vibrational waves inside a solid at temperature 𝜏𝜏.  This 
problem is closely related to the Planck black body distribution law for photons in a box, considered in 
the last lecture. 

 A solid is made up of atoms that sit at equilibrium positions in a regular periodic array called a 
crystal.  Consider the interatomic potential of atoms in a crystalline solid as shown in the figure below.  

 

The atoms have an equilibrium separation from their neighbors at a distance 𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛 .  Near the bottom of 

the potential well, the potential is described by 𝑉𝑉(𝑟𝑟) ≅ 𝑉𝑉0 + 1
2
𝑘𝑘(𝑟𝑟 − 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 )2 (dashed line in figure), 

where the “spring constant” 𝑘𝑘 is the curvature of the potential.  The quantum mechanical solutions for 

this potential are the harmonic oscillator eigenvalues, 𝐸𝐸𝑠𝑠 = 𝑠𝑠ℏ𝜔𝜔, where 𝜔𝜔 = �𝑘𝑘/𝑚𝑚 is the resonant 

frequency of a mass 𝑚𝑚 trapped in this potential, and 𝑠𝑠 = 0, 1, 2, 3, … is the occupation number of the 
mode.   The quanta of vibration in this single mode are called PHONONS, in analogy with the quanta of 
electromagnetic excitations of a single mode, called photons.  We can now use all of the results of the 
photon mode statistical mechanics to describe what happens to the phonon occupation of this mode.  In 

particular we have < 𝜀𝜀 >=< 𝑠𝑠ℏ𝜔𝜔 >= ℏ𝜔𝜔
𝑒𝑒ℏ𝜔𝜔 /𝜏𝜏−1

, as before for the energy in this mode at temperature 𝜏𝜏. 

 Now consider all of the modes of vibration of a cube of 𝑁𝑁 atoms vibrating around their 
equilibrium positions.  Take the cube to have sides 𝐿𝐿 and to be in equilibrium with a reservoir at 
temperature 𝜏𝜏.  We can solve the wave equation for elastic vibrational modes in the cube: ∇2𝑢𝑢�⃗ =
1
𝑣𝑣2  𝜕𝜕

2𝑢𝑢��⃗
𝜕𝜕𝑡𝑡2 , where 𝑢𝑢�⃗ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) gives the displacement from equilibrium of the atom at position (𝑥𝑥,𝑦𝑦, 𝑧𝑧), and 𝑣𝑣 

is the speed of sound propagation.  The result is essentially identical to the photon case, with the mode 

frequencies described by 𝜔𝜔𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

, where 𝑛𝑛 = �𝑛𝑛𝑥𝑥2 + 𝑛𝑛𝑦𝑦2 + 𝑛𝑛𝑧𝑧2, and 𝑛𝑛𝑥𝑥 = 1, 2, 3, …, 𝑛𝑛𝑦𝑦 = 1, 2, 3, …, 

𝑛𝑛𝑧𝑧 = 1, 2, 3, …  However, here there is a difference.  The number of elastic modes of the solid is not 



2 
 

infinite (as in the electromagnetic case), but finite and equal to 3𝑁𝑁.  The solid, made up of discrete 
atoms, cannot support waves whose wavelength is arbitrarily short.  In fact it cannot support waves with 
wavelengths shorter than twice the interatomic separation.  This limits the total number of modes to be 
just 3𝑁𝑁.  To include this constraint on the statistical physics, we have to count the modes from the 
lowest one and stop once we get to an upper bound, which we shall call 𝑛𝑛𝑚𝑚𝑎𝑎𝑥𝑥 .   To do this we once 
again convert from a sum on 𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧  to a continuous integral on 𝑛𝑛.  We find that 3𝑁𝑁 =

∑𝑛𝑛𝑚𝑚𝑎𝑎𝑥𝑥
𝑛𝑛 becomes 3𝑁𝑁 = 3 4𝜋𝜋

8 ∫ 𝑛𝑛2𝑛𝑛𝑚𝑚𝑎𝑎𝑥𝑥
0 𝑑𝑑𝑑𝑑, which yields 𝑛𝑛𝑚𝑚𝑎𝑎𝑥𝑥 = (6𝑁𝑁/𝜋𝜋)1/3.  The factor of 3 in front of 

the integral accounts for the three independent polarizations of the phonons (two transverse and one 
longitudinal). 

 The total energy of phonons in the solid is now given by 𝑈𝑈 = 3 4𝜋𝜋
8 ∫ ℏ𝜔𝜔𝑛𝑛

𝑒𝑒ℏ𝜔𝜔𝑛𝑛 /𝜏𝜏−1
𝑛𝑛𝑚𝑚𝑎𝑎𝑥𝑥

0 𝑛𝑛2𝑑𝑑𝑑𝑑, which 

becomes after a change of variable, 𝑈𝑈 = 3𝜋𝜋
2

𝑉𝑉𝜏𝜏4

(𝜋𝜋ℏ𝑣𝑣)3 ∫
𝑥𝑥3𝑑𝑑𝑥𝑥
𝑒𝑒𝑥𝑥−1

𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥
0 , where 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑘𝑘𝐵𝐵ΘD

𝜏𝜏
, and ΘD =

ℏ𝑣𝑣
𝑘𝑘𝐵𝐵

(6π2N
V

)1/3 is called the Debye temperature, and is a characteristic of the material.  Consider the low 

temperature limit 𝜏𝜏 ≪ 𝑘𝑘𝐵𝐵ΘD .  In this case, the upper limit of the integral can be extended to infinity 

with little error and we have the result 𝑈𝑈 = 3
5
𝑁𝑁𝑘𝑘𝐵𝐵𝜋𝜋4

ΘD
3 𝑇𝑇4 (𝑇𝑇 ≪ ΘD).  This result is very similar to the 

Stefan-Boltzmann law for photons in a box.  The heat capacity is a measure of how much energy must 

be added to the system to change its temperature by 1 degree, 𝐶𝐶𝑉𝑉 = 𝜕𝜕𝑈𝑈
𝜕𝜕𝑇𝑇

|𝑉𝑉 = 12𝑁𝑁𝑘𝑘𝐵𝐵𝜋𝜋4
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3
.  This 

famous result for the low temperature heat capacity due to phonons is widely reproduced in many 
materials.  In the high temperature limit (𝑇𝑇 ≫ ΘD), the heat capacity tends to a constant value, 
𝐶𝐶𝑉𝑉 = 3𝑁𝑁𝑘𝑘𝐵𝐵 , which is known as the law of Dulong-Petit. 

 


